
What’s new in MyHDL 0.8
Release 0.8

Jan Decaluwe

May 20, 2013

Contents

1 Modular bit vector types ii
1.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
1.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
1.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
1.4 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
1.5 Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
1.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

2 always_seq decorator iii
2.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
2.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
2.3 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
2.4 Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
2.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

All registers in a process are reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Register inferencing from variables is not supported . . . . . . . . . . . . . . . . . v

2.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

3 Other improvements vi
3.1 Conversion of top-level class methods . . . . . . . . . . . . . . . . . . . . . . . . . vi

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

3.2 Tracing lists of signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
3.3 library attribute for toVHDL() . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
3.4 timescale attribute for traceSignals() . . . . . . . . . . . . . . . . . . . . . vii

4 Acknowledgments vii

Author Jan Decaluwe



1 Modular bit vector types

1.1 Rationale

In hardware modeling, there is often a need for the elegant modeling of wrap-around behavior.
intbv instances don’t provide this automatically, because they assert that any assigned value
is within the bound constraints. Therefore, one has currently has to use other language features
for wrap-around modeling.

Often, this is straightforward. For example, the wrap-around condition for a counter is often
decoded explicitly, as it is needed for other purposes. Also, the modulo operator provides an
elegant one-liner in most scenarios.

However, in some important cases the current solution is not satisfactory. For example, we
would like to describe a free running counter using a variable and augmented assignment as
follows:

count += 1

This is not possible with the intbv type, as we cannot add the modulo behavior to this de-
scription. A similar problem exist of for a left shift as follows:

shifter <<= 4

These operations can only supported directly with a new type. For these reasons, it was felt
that this would be a useful addition to MyHDL.

1.2 Solution

The proposed solution is to borrow the idea behind Ada modular types. These are natural
integer types with wrap-around behaviour.

The wrap-around behavior of modular types is based on the sound mathematical concept of
modulo arithmetic. Therefore, the modulus is not limited to powers of 2.

Ada’s modular type is called mod. In MyHDL, we want also want to give it “bit-vector” sup-
port, like intbv. Therefore, proposed MyHDL type is called modbv.

1.3 Implementation

modbv is implemented as a subclass of intbv. The two classes have an identical interface and
work together in a straightforward way for arithmetic operations.

The only difference is how the bounds are handled: out-of-bound values result in an error
with intbv, and in wrap-around with modbv. The Wrap-around behavior would be defined
as follows, with val denoting the current value and min/max the bounds:

val = (val - min) % (max - min) + min

1.4 Interface

class modbv([val=0] [, min=None] [, max=None])
The modbv class implements modular bit vector types.



It is implemented as a subclass of intbv and supports the same parameters and op-
erators. The difference is in the handling of the min and max boundaries. Instead of
throwing an exception when those constraints are exceeded, the value of modbv objects
wraps around according to the following formula:

val = (val - min) % (max - min) + min

This formula is a generalization of modulo wrap-around behavior that is often useful
when describing hardware system behavior.

1.5 Conversion

Full-range modbv objects are those where the max bound is a power of 2, and the min bound
is 0 or the negative of the max bound. For these objects, conversion worked out-of-the-box
because this corresponds to the target types in Verilog and VHDL.

Currently, conversion is restricted to full-range modbv objects. It may be possible to support
conversion of the modulo behavior of more general cases, but this requires more sophistication
in the converter. This may be considered in the future.

1.6 See also

For a more in-depth discussion, see mep-106.

2 always_seq decorator

2.1 Rationale

In classical synthesizable RTL coding, the reset behavior is described explicitly. A typical tem-
plate is as follows:

@always(clock.posedge, reset.negedge)
def seq():

if reset == 0:
<reset code>

else:
<functional code>

The reset behavior is described using a the top-level if-else structure with a number of assign-
ments under the if. A significant piece of code at a prominent location is therefore dedicated
to non-functional behavior.

Reset behavior coding is error-prone. For a proper gate-level implementation, most if not all
registers should typically be reset. However, it is easy to forget some reset assignments. Such
bugs are not necessarily easily detected during RTL or gate-level simulations.

In the template, the edge that asserts reset is in the sensitivity list. It is easy to forget this, and
in that case the reset will not behave asynchronously as intended but synchronously. Note
also that it is somewhat strange to specify an edge sensitivity when describing asynchronous
behavior.

http://www.myhdl.org/doku.php/meps:mep-106


2.2 Solution

The proposed solution is to infer the reset structure automatically. The main idea is to use the
initial values of signals as the specification of reset values. This is possible in MyHDL, because
all objects are constructed with an initial value. The assumption is that the initial value also
specifies the desired reset value.

The solution is implemented with two new MyHDL constructs. The first one is a new decorator
called always_seq(). Using this decorator, code with identical behavior as in the previous
section can be described as follows:

@always_seq(clock.posedge, reset=reset)
<functional code>

The always_seq() decorator takes two arguments: a clock edge and a reset signal. It inspects
the code to find the registers, and uses the initial values to construct the reset behavior.

The second construct is a specialized signal subclass called ResetSignal. It is used as fol-
lows:

reset = ResetSignal(1, active=0, async=True)

The ResetSignal constructor has three arguments: the initial value as usual, an active argument
with the active level, and an async argument that specifies whether the reset style is asyn-
chronous or synchronous.

The proposed solution has some very desirable features.

Explicit reset behavior coding is no longer necessary. Code reviewers are thus no longer dis-
tracted by non-functional code. It is sufficient to check the initial values to verify whether
the reset value is correctly specified. Moreover, one indentation level is saved for functional
coding.

Even more importantly, the reset structure is correct by construction. All registers are automat-
ically included in the reset behavior, and the sensitivity list is automatically correct according
to the reset style.

Traditionally, the reset behavior is spread out over all sequential processes. Therefore, it has
to be debugged by investigating all those processes. Even worse, if a change in style or active
level is required, all processes are affected. In contrast, with the proposed technique all reset
features are specified at single location in the ResetSignal constructor. Changes are trivial.
For example, to change to an active high synchronous reset one merely has to change the
constructor as follows:

reset = ResetSignal(1, active=1, async=False)

Occasionally, it is useful to have registers without reset at all. The proposed technique is also
useful in that case. In particular, the always_seq() decorator accepts None as the reset argu-
ment:

@always_seq(clock.posedge, reset=None)

A reviewer will have no doubt what the intention is. In contrast, in the case of a traditional
always block, the reviewer may think that the designer has delayed the detailed reset coding
for later and then forgotten about it.



2.3 Interface

always_seq(edge, reset)
The always_seq() decorator is used to describe sequential (clocked) logic.

The edge parameter should be a clock edge (clock.posedge or clock.negedge). The
reset parameter should a ResetSignal object.

class ResetSignal(val, active, async)

This Signal subclass defines reset signals. val, active, and async are manda-
tory arguments. val is a boolean value that specifies the intial value, active is
a boolean value that specifies the active level. async is a boolean value that
specifies the reset style: asynchronous (True) or asynchronous (False).

2.4 Conversion

As modeling the reset behavior is a typical task in synthesizable RTL coding, the proposed
technique is fully convertible to Verilog and VHDL.

2.5 Limitations

All registers in a process are reset

All registers in a process are automatically included in the reset behavior. If it is the intention
that some registers should not be reset, those registers and the corresponding code should be
factored out in a separate process.

Actually, this is not really a limitation but a feature. If some registers in a process are reset and
others not, a synthesis tool may generate undesirable feedback loops that are active during the
reset condition. This is not good practice and probably not the intention.

Register inferencing from variables is not supported

An important limitation is that the proposed technique is limited to registers inferred from sig-
nals. Registers inferred from variables are not supported, because such state variables cannot
be described in classic functions (in particular the functions required by MyHDL decorators
such as always_seq() and always()).

In fact, the reason is a Python2 limitation. Currently, to infer registers from variables, one has
to use the instance() decorator and declare the state variables outside an infinite while
True loop.

In Python3, this limitation can be lifted with the introduction of the nonlocal declaration.
This will make it possible for functions to modify variables in the enclosing scope. It should
be possible to adapt the always_seq() and always() decorators to support such variables.

2.6 See also

For a more in-depth discussion, see mep-109.

http://www.myhdl.org/doku.php/meps:mep-109


3 Other improvements

3.1 Conversion of top-level class methods

Often it is desirable to embed an HDL module description in a class. Previous versions would
only convert a class method if it was not the top-level. This release adds the conversion of
top-level class methods.

Example

class DFilter(object):
def __init__(self,delay_length=3,fs=1):

<init code>
def nulls(self):

<support method code>
def m_top(self,clock,reset,x,y):

<myhdl module code>

clock = Signal(bool(0))
reset = ResetSignal(0,active=0,async=True)
x = Signal(intbv(0, min=-8, max=8))
y = Signal(intbv(0, min=-64, max=64))

filt = DFilter()
toVerilog(filt.m_top,clock,reset,x,y)
toVHDL(filt.m_top,clock,reset,x,y)

See also

For a more in-depth discussion, see mep-108.

3.2 Tracing lists of signals

Tracing lists of signals is now supported. Contributed by Frederik Teichtert, http://teichert-
ing.de . The following shows how the list of signals are displayed in a waveform viewer

delay_taps = [Signal(intbv(0,min=-8,max=8)) for ii in range(3)]

http://www.myhdl.org/doku.php/meps:mep-108
http://teichert-ing.de
http://teichert-ing.de


3.3 library attribute for toVHDL()

toVHDL() now has a library function that can be used to set the library name in the VHDL
output. The assigned value should be a string. The default library is “work”.

3.4 timescale attribute for traceSignals()

traceSignals() now has a timescale attribute that can be used to set the timescale in the
VCD output. The assigned value should be a string. The default timescale is “1ns”.

4 Acknowledgments

Several people have contributed to MyHDL 0.8 by giving feedback, making suggestions, fixing
bugs and implementing features. In particular, I would like to thank Christopher Felton and
Frederik Teichert.

I would also like to thank Easics for the opportunity to use MyHDL in industrial projects.

http://www.easics.com

	Modular bit vector types
	Rationale
	Solution
	Implementation
	Interface
	Conversion
	See also

	always_seq decorator
	Rationale
	Solution
	Interface
	Conversion
	Limitations
	All registers in a process are reset
	Register inferencing from variables is not supported

	See also

	Other improvements
	Conversion of top-level class methods
	Example
	See also

	Tracing lists of signals
	library attribute for toVHDL()
	timescale attribute for traceSignals()

	Acknowledgments

